
 

 

Modified matched signal transform for parameter estimation of spread 

spectrum stretch signal  
 

XIAODONG ZENG 

Southwest China Institute of Electronic Technology  

No.85, West YingKang Road, Chengdu 

CHINA  

zengxdcetc@sina.cn     
 

 

Abstract: - The spread spectrum stretch (S-cubed) is a kind of hybrid signal which has the advantages of the 

expansion and wide instantaneous bandwidth, proved to be the potential option for low probability of intercept 

(LPI) radar and stealth communications. In this paper, the S-cubed model that superimposes a short, cyclically 

repeated, discrete phase code on linear frequency modulation (LFM) is presented. In order to extract the signal 

features, we formulate modified matched signal transform (MMST) and then propose a novel approach to 

estimate the parameters of S-cubed in MMST domain. Furthermore, the numerical simulation and parameter 

estimation robustness are also studied. The simulation results show that when signal to noise ratio (SNR) is -

7dB, the probability of correct decision (PCD) of the chirp rate has reached 90%.  

 

 

Key-Words: - spread spectrum stretch (S-cubed); modified matched signal transform (MMST); parameter 

estimation. 

 

1 Introduction 
Over the past decade, the hybrid modulation 

approach has been widely used in radar and 

communications [1-4]. It improves a tracking 

performance criterion such as minimizing the 

tracking mean-squared error (MSE) or maximizing 

target information retrieval. Furthermore, it has 

raised an unprecedented challenge to electronic 

reconnaissance because of the unpredictability and 

randomness.  The spread spectrum stretch (S-cubed) 

studied here is a novel hybrid signal which 

simultaneously exploits linear frequency modulation 

(LFM) and discrete phase code [5]. The hybrid S-

cubed is fast becoming an important method applied 

in low probability of intercept (LPI) radar and 

stealth communications because it has the 

advantages of these two kinds of modulations which 

are the expansion performance of LFM and wide 

instantaneous bandwidth of discrete phase code. 

Meanwhile, the synergistic effects of combining 

LFM and discrete phase code can further reduce the 

probability of intercept to electronic reconnaissance.   

According to the square phase of LFM and the 

superposition phase shift of discrete phase code, the 

S-cubed has the characteristic of nonlinear phase. 

Under the circumstances, matched signal transform 

(MST) becomes a potential transform to process the 

S-cubed. MST can effectively extract nonlinear 

phase signal characteristics in MST domain. 

Chetwani [6] introduces the principle of MST which 

has been applied in communication system to 

remove the time-varying interference. It is perfectly 

localized at the FM rate of signals with linear or 

non-linear instantaneous frequency in the time-

frequency domain. Shen [7] studies the interference 

suppression of the direct sequence spread spectrum 

(DSSS) communication system through MST. MST 

is highly localized for signals with nonlinear phase 

along their modulation rate. Li [8] employs MST to 

identify smeared spectrum (SMSP) jamming in 

radar system. The new algorithm of jamming 

recognition based on MST obtains a fairly high 

correct identification ratio. MST is widely used in 

various fields. It is available to remove the 

interference, identify the jamming and estimate the 

parameter. 

Motivated by MST, the modified MST (MMST) 

pointing for the S-cubed is proposed. First, we 

compare the MMST of S-cubed with that of LFM 

and deduce their relativity. Secondly, employing the 

S-cubed signal feature in MMST domain, the chirp 

rate of the single and multi-components can be 

obtained. In the light of the estimated chirp rate, we 

reconstruct the original LFM signal and then use 

this signal to de-chirp the S-cubed leaving discrete 

phase code. Finally, by the cyclic autocorrelation 

function of the code, the code rate is also estimated. 

When the signal to noise ratio (SNR) is -7dB, the 

probability of correct decision (PCD) of the chirp 

rate by the proposed algorithm has reached 90%. 
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Meanwhile, when the SNR is more than 6dB, the 

normalized root mean square error (NRMSE) of the 

estimated code rate is less than 10
-2
. 

 

 

2 The Signal Model  
The S-cubed is a signal that simultaneously contains 

two kinds of modulations, LFM and discrete phase 

code. It not only has the advantageous processing 

property of stretch but also gains wide instantaneous 

bandwidth of discrete phase code. The S-cubed can 

be denoted as 
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, P  is the code length, 

usually a small integer, such as 4. N is the number 

of repeated periods. 1T and 2T are the code width 

and the period, respectively. 2 1T PT= . pc is the 

code, { }1,1pc ∈ − when it is binary discrete phase 

code, { }1,1, ,pc j j∈ − − when it is Frank code. lA is 

the signal amplitude, d  the polynomial phase order, 

D  the maximum. 
l

da  is the coefficient of lth-

component, L  the number of components. Of 

course, there are a variety of polynomial phase 

candidates, but undoubtedly, LFM is a mature 

technique which might be used. In this paper, we 

focus on the square phase of LFM, 

then 1 3[ ... ] 0l l l

Da a a = . 

In particular, Lynch [5] points out that, different 

from the traditional phase codes, discrete phase code 

of the S-cubed needs to have the minimal mismatch 

loss in decoding and optimal spectral spreading. At 

present, there are several kinds of potential discrete 

phase codes alternative, such as binary phase code 

with length 4 and Frank code with length 16. This 

paper assumes that waveform designers adopt 

binary phase code with length 4 which is more 

common and easier for realization. The length 4 

code is the binary phase code with no mismatch loss; 

i.e., the mismatch loss 
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where [ ]1 1 1 1p pc ω= = − , pω the decoder 

weightings, then 0L = dB.  

Meanwhile, the instantaneous signal power 

spread uniformly over 
1

1
T

producing close to a LPI 

improvement
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for an interceptor detection filter with the bandwidth 

of
1

1
PT

relative to conventional stretch. 

A code of length 4, with a 25 ns code width, 

generates a line spectrum with lines 

1/ (4 25ns)=10MHz× apart. 

With 10 MHz channelized receiver filter, the 

long code width which is beyond four 25 ns chips 

will put more lines in each detection filter. However, 

a detection filter designed for conventional stretch 

could be much narrower than 10 MHz, and then a 

longer code would be effective. A near-uniform 

spreading of the instantaneous signal power over 

11/ =40MHzT  produces close to a 6 dB LPI 
improvement for a 10 MHz interceptor detection 

filter, relative to conventional stretch. 

In summary, the S-cubed approach has the 

instantaneous bandwidth properties of discrete 

phase code, along with the highly desirable 

sampling and data rate properties of stretch. All of 

these properties make it be applied in a wide field, 

such as LPI radar and stealth communications.  

 

 

3 The Parameter Estimate of The S-

cubed Based on MMST  
Neither the time domain nor frequency domain can 

adequately reflect its characteristics. The time-

frequency transform can be used to study it naturally 

[9]. Based on the phase difference, we can also 

extract the instantaneous frequency and estimate the 

parameters [10]. The methods above are feasible, 

but time-frequency approach incurs large amount of 

calculation and the phase difference is sensitive to 

the noise. This paper focuses on the composition of 

S-cubed and extracts the signal features in the 

MMST domain. The following results show that the 

proposed method can be implemented by FFT to cut 

the computation load and is effective in the negative 

SNR.   

MST can be denoted as [6-7]  
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where ( )tξ is the nonlinear characteristic basis 

function. ( ) 1/ ( ) /g t d t dtξ= . ct  is the 

observation time of ( )tξ . gf  is the frequency in 

MST domain. 

( )tξ  is selectable such as Mellin, linear, power 

and exponential basis functions. Among them, there 

is an important MST which adopts the linear basis 

function called linear MST (LMST). LMST is 

ideally matched to LFM signal. 

 

 

3.1 MMST of the S-cubed 
Since the S-cubed combines LFM, LMST is the 

preferential choice for its feature extraction. But the 

S-cubed also includes discrete phase code resulting 

in an effect on the linearity of LMST. The linearity 

is useful for the electronic reconnaissance signal 

processing because it occurs sometimes that the 

receiver intercepts the time-frequency overlapped S-

cubed signals in the complex electromagnetic 

environment. In such a case, we should exploit the 

linearity of LMST to separate them from the 

transform domain. For this reason, we do some 

modifications to LMST and get the derivative 

MMST which maintains the linearity for the S-

cubed.  
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where ( ) 1/ ( ( ) / )g t d t dtα α ξ= ⋅ and α  is the 

linear factor. 
2( ) 0.5t tξ =  and 2α = .  

 

 

3.1.1 Single component case  
For MMST of the S-cubed, we consider the single 

component signal with 0 0a ϕ= and 2a kπ= . 
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where k and 0ϕ are the chirp rate and initial phase, 

respectively. Assuming that there are two codes 

with phase discontinuity 0  to π  in the observation 

time 1 2[ , ]t t , 0t  is the cut-off time. MMST of the S-

cubed arrives at 
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According to Euler’s theorem 
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where gc k f= − . 

The modulus of MMST spectrum from (8) is  
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Compared with the S-cubed, we also get MMST 

of the LFM. 
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The modulus of MMST spectrum from (10) is      
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From the equation (9) and (11), we observe that 

MMST of the S-cubed has an additional term to that 

of LFM. The additional term which results from 

discrete phase code is 
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Fig. 1 The modulus of MMST spectrum for the 

single component 

Fig.1 shows the modulus of MMST spectrum. In 

Fig.1, ‘S-cubed’ stands for MMST of the S-cubed, 

‘LFM’, MMST of LFM. There is a peak for 3 ( )sF c  

and ( )LFMF c at 0c = . The side lobes of the S-

cubed are worse than the LFM because of the phase 

discontinuity caused by discrete phase code. 

 

 

3.1.2 Multi-components case  
Based on the linearity of MMST, when the 

( )cS t consists of multiple components 
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where [ ]MMST ⋅  is MMST operator. 
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3.1.3 Fast algorithm  
Considering the fast algorithm of (3), we make 

that ( )t tξ ξ= , then 
1 1( ( )) ( )t t tξξ ξ ξ− −= =  and 

( )dt g t dtα ξα= . Thus, (3) can be rewritten as   
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where 
1( ) ( ( ))convS t S tξ ξα ξ −=  is the convolution 

signal. 
'

ct  is the observation time of ( )convS tξ . 

From (15), we find out that there are two main steps 

to realize MMST. First, we get the convolution 

signal ( )convS tξ  and then estimate the frequency of 

( )convS tξ  in the transform domain by FFT.  

 

 

3.2 Parameter estimation  
From equation (9) and Fig.1, we know that there is a 

peak for 3 ( )sF c  at 0c = , i.e. gf k= . The location 

of the peak indicates the chirp rate of the S-cubed. 

Obviously, we can search for the maximum 

modulus of MMST, and the corresponding gf  is the 

estimate of k . 

Moreover, we reconstruct the original LFM 

signal ( )ˆ
LFMS t  by the above estimate of k .  

          ( ) ( )2ˆˆ j kt

LFMS t e
π

=                          (16) 
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Multiply the conjugation of 

( )cS t with ( )ˆ
LFMS t , we get 
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where pϕ  is the code phase corresponding to pc . 

Because ˆ 0k k k∆ = − ≈ , ( )S t  is approximately 

equal to discrete phase code. The code is repeated 

cyclically, without loss of generality, we consider 

the code in one period.    
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The modulus of the cyclic autocorrelation 

function ( )SRα τ [11] is  

1
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where 

*( ) [ ( ) ( - ) exp( 2 )]
2 2

SR E S t S t j tα τ τ
τ πα= + − is 

independent on the initial phase 0ϕ , α the cycling 

frequency , l  an integer, | | 0τ ≠ . 

From (19), it is found that ( )SRα τ  is nonzero 

when the cycling frequency α is an integral 

multiple of the code rate. Fig.2 shows the 

spectrum ( )SRα τ . ( )SRα τ is a discrete spectrum 

having the peaks when the horizontal axis
1

l

T
α = . 

So, search the peaks of the spectrum ( )SRα τ , then 

compute the interval between the adjacent peaks 

which is the estimate of the code rate. However, 

( )SRα τ is the spectrum under multidimensional 

index. In order to reduce the calculation amount, we 

should choose a suitable time delay bestτ  and 

descend the procedure to one dimension. bestτ  will 

be discussed in section 4.2 which is proved to be 

half of the code width 1T  approximately. 
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Fig.2  The cyclic autocorrelation spectrum 

In conclusion, the procedure of the parameter 

estimation is shown as follows. 

Step 1: Compute the convolution 

signal ( )convS tξ . 
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) 

As a result, ( )convS tξ  becomes a phase shift 

keying (PSK) signal which has the carrier 

frequency k . There are many ways to estimate the 

frequency. FFT is absolutely the direct method. 

More important, FFT can satisfy the linearity of 

MMST. 

Step 2: Make the FFT of ( )convS tξ  to obtain 

MMST spectrum whose horizontal axis 

ish ,
20.5 1c gT f h+ = , cT is the pulse duration. 

Step 3: In MMST domain, search for the 

maximum denoted as 3 max
( )sF h  and record the 

corresponding index maxh . Then 

               max max

2

1 1ˆ
( ) 0.5c c

h h
k

T Tξ
− −

= =               

(21) 

From (21), of course, we know the frequency 

resolution of k̂  that is
1

( )cTξ
. Both the nonlinear 

characteristic basis function and pulse duration have 

an effect on the frequency resolution which will be 

studied at section 4.3. 

Step 4: De-chirp the S-cubed by the 

reconstructed LFM signal ( )ˆ
LFMS t  to obtain 

discrete phase code. 
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Step 5: Calculate the cyclic autocorrelation 

( )SRα τ of discrete phase code, and then search the 

peaks of the spectrum ( )SRα τ  getting the code rate 

estimate. 

 

 

4 Simulations  
In order to test the proposed algorithm, the 

following simulations are done. In simulations, the 

sampling frequency sf =1GHz, code length 4P = , 

code width 1 15T ns= , and discrete phase code is [1 

1 -1 1]. The bandwidth is 100MHz. The time of 

Monte Carlo is 1000. For the single component, the 

chirp rate 1/ ( )k B N P T= ⋅ ⋅ , and the proposed 

algorithm is compared with the dual threshold 

method. For the dual threshold method, when SNR 

is more than 7dB, the threshold 10D = ; otherwise, 

8D = . Aiming at the situation of four components, 

chirp rates 1 1/ ( )k B N P T= ⋅ ⋅ , 2 12k k= , 3 13k k= , 

4 14k k= . When the error of the chirp rate estimate 

ˆk k

k

−
is less than 0.1%, it is regarded as one correct 

decision where k̂ is the estimate of k . The 

performance is evaluated by the PCD. The PCD is 

defined as the ratio of the number of correct 

decisions to the total time of Monte Carlo. For the 

estimate of the code rate, the NRMSE is the criteria. 

The definition of NRMSE is as follows 
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where x  is the parameter to be estimated, vx  is the 

estimate in the vth  time. oM  is the time of Monte 

Carlo. 

 

 

4.1 The chirp rate estimation 
Through the analysis of section 3.1, when the phase 

function of the S-cubed matches the nonlinear 

characteristic basis function ( )tξ , a peak will appear 

at gf k= . As a result, the chirp rate of the S-cubed 

could be estimated by the sharp spectral peak in 

MMST domain. When the chirp rate is estimated by 

MMST spectrum, the observation time is ( ),−∞ +∞  

theoretically so that the spectral peak of MMST has 

the Dirac function form. In practice, the observation 

time is limited that is equivalent to add the window 

in the time domain. The introduction of window 

functions increases the side lobes and reduces the 

peak amplitude. However, it only needs to get the 

accurate position of the main lobe. The influence of 

the amplitude precision can be ignored, so the 

rectangular window is the potential choice. 
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Fig. 3 The modulus of MMST spectrum for the four 

components 

Fig.3 shows the modulus of MMST spectrum of 

four components. There are four peaks 

corresponding to four components. The locations of 

these peaks are related to the chirp rates. 
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(c) double components of 2k  
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Fig. 4 PCD VS SNR of the chirp rate 

In Fig.4, ‘MMST’ stands for the single 

component by MMST, ‘Threshold’ the single 

component by the dual threshold method. ‘ N ’ 
period number. ‘k1’, ‘k2’, ‘k3’ and ‘k4’, the four 

components by MMST. 

From the simulations above we can know that when 

the SNR is -7dB, the PCD of the chirp rate by the 

proposed algorithm has reached 90%, however, for 

the dual threshold method, in order to reach the 

same probability, the minimum SNR needed is -

5dB.  

In order to study the adaptability for the multi-

components, simulations are made for four 

components signal. The simulation results prove the 

linearity of MMST for the S-cubed. The multi-

components present multiple peaks in MMST 

domain. The high PCD of the chirp rate can be 

accomplished via locating the peaks. 

 

 

4.2 The code rate estimation 
Table 1 NRMSE of the code rate estimation 

NRMSE (10
-1
) 

The choice of the time delay 

0.3T1 0.6 T1 0.5 T1 

SNR=2dB 0.751 0.561 0.339 

SNR=4dB 0.595 0.265 0.136 

SNR=6dB 0.306 0.039 0.039 

SNR=8dB 0.173 0.039 0.039 

SNR=10dB 0.039 0.039 0.039 

SNR=12dB 0.039 0.039 0.039 

SNR=14dB 0.039 0.039 0.039 

SNR=16dB 0.039 0.039 0.039 

SNR=18dB 0.039 0.039 0.039 

 

Table 1 shows the NRMSE of code rate 

estimation by different time delays. The simulation 

results indicate that bestτ  is a half of the code width 

1T  approximately.  
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Fig. 5 NRMSE VS SNR of the code rate 

In Fig.5, ‘k’ stands for ˆ 0k k k∆ = − = , ‘k 

estimated’ ˆ 0k k k∆ = − ≠ . 

It can be found by Table 1 and Fig 5 that when 

the SNR>6dB, the NRMSE of the estimated code 

rate is less than 10
-2
. The effect of ˆk k k∆ = − on the 

code rate estimation turns out to be not significant. 

 

 

4.3 The effect of the parameter 

From the equation (21),
2

1 1

( ) 0.5c cT Tξ
= , we find 

that maxh and cT  have an influence on the estimate of 

k . On the one hand, obviously, with the increase 

of cT , the precision of k̂  will improve. That is to 

say, for the longer pulse, we can get the more 

accurate estimation. On the other hand, we have 

pointed out that the estimate of maxh depends on the 

selection of window. Since the peak location for 

accurate frequency estimate is needed, we choose 

the rectangular window whose main lobe is narrow 

and easy for identification. The simulation results of 

different cT  and windows are shown in Fig 6. 
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Meanwhile, the estimate of the code rate is 

related toτ . To reduce the computation cost, we 

should assign a suitable time delay bestτ  and 

descend the searching procedure to one dimension. 

The simulation results show that bestτ  is 

approximately half of the code width 1T  finally. 

Moreover, we consider the error transfer. In our 

processing, the estimate of k  can have an effect on 

the estimate of the code rate. When ˆ 0k k k∆ = − ≠ , 

there will be a term
( )2j kt

e
π∆

. This term is a baseband 

LFM signal which has also been proven to be 

cyclostationary, the modulus of cyclic 

autocorrelation function ( )LFMRα τ  is 

             

2 (2 2 ),
( )

0 ,
LFM

k
R

otherwise

α πδ πα π τ α
τ

+ ∆ ≠ 0
= 


    

(23) 

where | | 0τ ≠ .It is a Dirac function that is nonzero 

when kα τ= −∆ .Because k∆  is very small, the 

effect of the impulse on the estimate of the code rate 

can be ignored.  
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Fig. 6 PCD VS SNR of the chirp rate of different 

parameters 

In Fig.6, ‘N=6, rectangular’ stands for N=6, 

the rectangular window, ‘N=5, rectangular’ N=5, 

the rectangular window, ‘N=6, hamming’ N=6, 

the hamming window. According to the simulation 

results, we verify the conclusion that the longer 

pulse and the rectangular window have the better 

performance of k  estimation. 

 

 

5 Conclusion 
We investigate the S-cubed signal and build its 

signal model. In order to intercept the S-cubed, an 

parameter estimation algorithm is proposed based 

on MMST spectrum. The algorithm is feasible for 

both single and multi-components S-cubed signal. 

The next work will widen MMST to be used in 

signal detection or automatic modulation 

configuration (AMC) for the other kinds of hybrid 

modulation signals. 
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